First Principles Investigation of H Addition and Abstraction Reactions on Doped Aluminum Clusters

David J. Henry, Adrian Varano, and Irene Yarovsky*

Applied Physics, School of Applied Sciences, RMIT University, GPO Box 2476V, Victoria 3001, Australia Received: December 4, 2008

We have investigated axial interactions of H_2 with $Al_{12}X$ (X = Mg, Al, and Si) clusters and found that homolytic dissociation leading to $Al_{12}XH$ and H atom proceeds without a barrier but is an extremely endothermic process. The calculated difference in energy of the addition and abstraction reactions indicates that any $Al_{12}X$ -based hydrogen storage technology that involves predissociation of H_2 will be limited by the competing processes. We have also discovered that while there is a modest barrier for dissociation of H_2 on a single $Al_{12}Mg$ cluster to give the dihydride, the process occurs spontaneously between two closely spaced $Al_{12}Mg$ clusters, resulting in the formation of two $Al_{12}MgH$ species. Doping of the cluster with an electropositive atom (Mg) enables the transfer of electron density to the Al cage, which enhances H_2 dissociation. The information gained can contribute to the design of novel solid-state materials made of doped Al clusters, which may ultimately be suitable for catalytic processes.

1. Introduction

There has been considerable interest in the interaction of hydrogen with light metals in order to discover inexpensive lightweight materials for hydrogen storage. For this to be successful, the interaction of hydrogen with the material must be thermodynamically and kinetically favorable.¹ This means that the barrier for dissociative adsorption of H₂ onto the materials should be relatively low, and the binding of hydrogen to the material should be only slightly exothermic. Recently, Pozzo et al.² found that when Ni/Ti are added as dopants on an Mg(0001) surface, the barrier for hydrogen dissociation is negligible. However, the binding energy of two hydrogen atoms on the Ti-doped surface is high, impeding diffusion away from the Ti site, whereas on the Ni-doped surface the energy barrier for diffusion is significantly reduced. This suggests that Ni is a better catalyst for Mg hydrogenation since it allows for diffusion away from the catalytic sites. Similarly, Bogdanovic and Schwickardi³ demonstrated that doping alkali metal hydrides with a few mol% of Ti can lead to reversible decomposition at reasonable temperatures and pressures. Theoretical studies^{4,5} of Ti-doped NaAlH₄ indicate that the Ti dopant is responsible for catalyzing H₂ chemisorption by altering the electrostatic field at the defect site when the Ti atoms are in specific local arrangements. However, the cyclable hydrogen content of these materials is low ($\sim 4\%$). The challenge, therefore, remains to combine high hydrogen content with favorable kinetics for adsorption and desorption of H₂. One possible alternative to these bulk materials is cluster-based materials.

The properties of metal clusters can differ significantly from those of bulk materials and are often dependent on not only the composition but also the size of the cluster. As a result, clusterbased materials are increasingly being investigated for their reactivity and catalytic activity. Experimental and theoretical studies have shown that among the small aluminum clusters, Al₇ and Al₁₃ are particularly stable^{6–9} because their valence electronic configurations approach closed shell "magic" configurations, as characterized by the jellium model.^{10,11} It has also been proposed that adsorption of hydrogen on Al₁₃ can provide the necessary electron to complete its electronic configuration and, therefore, Al₁₃H may be suitable for the preparation of new cluster-assembled materials.^{12–16} Among the doped aluminum clusters, the silicon-centered Al₁₂Si cluster has been widely investigated;¹⁷ however, the magnesium-centered Al₁₂Mg has been less studied.^{18,19} Lu et al.¹⁹ recently reported that Al₁₂Mg has icosahedral symmetry. However, our theoretical calculations²⁰ indicate that the Al₁₂Mg cluster is a stable structure with D_{5d} symmetry due to a Jahn–Teller distortion and has a binding energy of 29.62 eV, which exists in the ³A_{1g} triplet electronic state. Al₁₂Mg has 38 valence electrons and, therefore, within the Jellium model might be expected to have a favorable interaction with H₂ to achieve a 40 electron closed shell configuration.

We found²⁰ that the binding energy of a H atom to $Al_{12}Mg$ is 2.36 eV, and the reaction (eq 1) proceeds without a barrier, in agreement with Lu et al.¹⁹ Similarly, our previous study²¹ found that addition of a H atom to the $Al_{12}X$ clusters (X = Al and Si) also proceeds without a barrier (eqs 2 and 3) and that these are exothermic reactions.

$$Al_{12}Mg + H \rightarrow Al_{12}MgH$$
 $\Delta H = -2.36 \text{ eV}$ (1)

$$Al_{13} + H \rightarrow Al_{13}H \qquad \Delta H = -2.21 \text{ eV} \qquad (2)$$

$$Al_{12}Si + H \rightarrow Al_{12}SiH$$
 $\Delta H = -1.77 \text{ eV}$ (3)

Moreover, Al_{13} and derivatives have been theoretically demonstrated to strongly bond significant numbers of H atoms $(Al_{12}H_{20}$ and $Al_{13}H_{13})^{22,23}$ and can be useful in H storage applications. However, the interaction of hydrogen with lightmetal clusters is generally characterized by high binding energies and slow kinetics that may be advantageous in the formation of stable assemblies but is less appropriate for catalytic applications and the use of clusters as a direct hydrogen storage medium. It is, therefore, of interest to investigate how doping of these clusters alters their stability and reactivity with H. We have recently²⁰ been investigating theoretically the reactivity of H₂ with neutral and charged X-centered aluminum clusters $(Al_{12}X, X = Mg, Al, and Si)$ (eqs 4–6) and found that the lowest

^{*} Corresponding author. E-mail: irene.yarovsky@rmit.edu.au.

H Addition and Abstraction Reactions

barrier for dissociative adsorption of H_2 on a neutral cluster occurs for the $Al_{12}Mg$ cluster, while the highest barrier was found to be on the closed shell $Al_{12}Si$.

$$Al_{12}Mg + H_2 \rightarrow Al_{12}MgH_2 \ \Delta H^{\ddagger} = 0.52 \text{ eV},$$

$$\Delta H = -0.41 \text{ eV} \qquad (4)$$

$$Al_{13} + H_2 \rightarrow Al_{13}H_2 \qquad \Delta H^{\ddagger} = 0.80 \text{ eV},$$

$$\Delta H = -0.40 \text{ eV} \tag{5}$$

$$Al_{12}Si + H_2 \rightarrow Al_{12}SiH_2 \quad \Delta H^{\ddagger} = 1.37 \text{ eV},$$
$$\Delta H = +0.24 \text{ eV}$$
(6)

The barriers for H_2 desorption from the dihydrogenated clusters are generally quite substantial. Our study also found that there was a strong linear correlation between barrier heights (ΔH^{\dagger}) and reaction enthalpy, indicating that these reactions are strongly thermodynamically driven. Further to this, we found that while there was very little correlation between frontier orbital energies and ΔH^{\dagger} , there were much closer relationships between cluster distortion energies and ΔH^{\dagger} .

In this work we extend our investigation of H_2 interactions with $Al_{12}X$ clusters to include reaction profiles for H–H bond homolysis by one and two clusters.

2. Computational Procedures

Spin-polarized calculations were performed at the Perdew– Burke–Ernzerhof/double numerical polarized (PBE/DNP) level with the DMol³ program,^{24,25} which we have tested thoroughly for this application against benchmark levels of theory.²¹ All geometries were calculated with the PBE functional²⁶ using the DNP basis set that includes a *d*-type polarization function on heavy atoms and a *p*-type polarization function on hydrogen. It was previously shown that an all electron basis set with the addition of *d* functions is essential for a proper description of high-valence Al atoms.²⁷ The computationally economical DNP basis set is comparable in size to the Gaussian-type 6-31G(d,p) basis set and has been found to give similar performance for Al cluster geometries and binding energies.²¹

Atom-centered grids were used for the numerical integration with the "fine" option in DMol³ that includes about 2000 grid points for each atom. Self-consistent field (SCF) convergence was set so that the rms change in the electronic density was less than 2.7×10^{-5} eV. Convergence tolerance for geometry optimization was 2.7×10^{-4} eV for energy, 0.054 eV/Å for force, and 0.005 Å for displacement. The orbital cutoff was set to 15.0 Å, and the thermal occupation was set at 0.136 eV. No symmetry constraints were applied to the systems investigated, and vibrational frequency analysis was performed to characterize all stationary points as true minima or transition structures. All energies determined in the present study have been corrected for zero-point vibrational energy.

3. Results and Discussion

The first group of reactions we consider in this work involve homolytic H_2 bond cleavage leading to the formation of $Al_{12}XH$ and H atom (eqs 7–9).

$Al_{12}Mg + H_2 \rightarrow Al_{12}MgH + H$	$\Delta H = +1.91 \text{ eV}$	(7)
$Al_{13} + H_2 \rightarrow Al_{13}H + H$	$\Delta H = +2.06 \text{ eV}$	(8)
$Al_{12}Si + H_2 \rightarrow Al_{12}SiH + H$	$\Delta H = +2.50 \text{ eV}$	(9)

Reactions 7–9 are strongly endothermic. Homolytic bond cleavage of H_2 requires 4.27 eV, but formation of $Al_{12}XH$

returns only -1.77 to -2.36 eV (eqs 1-3) leading to the large endothermicities for these reactions. We have carried out an extensive search of the potential energy surface along the reaction coordinate and have not been able to locate a transition state for these reactions.

The bond homolysis processes (eqs 7-9) involve the same set of reactants as the dissociative adsorption processes (eqs 4-6), respectively. All of these reactions begin with the same set of Al₁₂X and H₂ orbitals and differ only in the orientation of the molecules and, therefore, the orbitals with respect to one another. Previously, we noted for the adsorption reactions (eqs 4-6) that while overlap of the highest occupied molecular orbital (HOMO) of the cluster with the lowest unoccupied molecular orbital (LUMO) of H₂ should lead to the weakening of the H-H bond during the process, there was no clear correlation between the $(Al_{12}X^{HOMO}-H_2^{LUMO})$ difference and the barriers. This is in agreement with the earlier work of Upton and co-workers28,29 for the Al₆/H₂ system. The absence of barriers for reactions 7-9 also demonstrates the relative unimportance of the Al₁₂X^{HOMO}- H_2^{LUMO} gap for these interactions. However, both our previous study and that of Upton identified a more important contribution arising from the significant changes in the cluster populations necessary to initially minimize repulsive interactions between the cluster and H₂ and then subsequently to enable formation of the new Al-H bonds. This reorganization of the electronic populations can be linked to the distortion energy of the clusters for the Al₁₂X/H₂ systems. We note here that the HOMO of the Al₁₂Mg cluster (Figure 1a) has axial symmetry³⁰ and is, therefore, better suited to an axial σ -type interaction rather than the pseudo- π -type interaction required for reaction 4. Consequently, a σ -type interaction along the axis of the cluster, as in reaction 7, results in little distortion of the cluster orbitals and, therefore, eliminates this contribution to the interaction. In comparison, while the HOMO of Al₁₃ has some axial character, it is more delocalized than observed for the Al₁₂Mg cluster. The HOMO of Al₁₂Si has essentially no axial character and is largely delocalized among the Al cage atoms, and we might, therefore, expect barriers for these reactions. However, for both Al13 and Al₁₂Si there are axial orbitals (162 and 157, respectively) close in energy to the HOMO of these clusters that can efficiently overlap with LUMO of H₂ and, therefore, minimize repulsive interactions

Figure 1. Frontier and key orbitals of (a) $Al_{12}Mg$, (b) Al_{13} , and (c) $Al_{12}Si$.

Figure 2. Definitions of key calculated distance and angle for reactions 7–9.

between the clusters and H_2 , thus, explaining the absence of barriers for H adsorption in these systems.

Clearly reactions 7-9 are energetically unfavorable and will only occur at high temperatures, making them of limited practical application. However, the reverse reactions in which H atom abstracts hydrogen from Al₁₂XH also proceed without barriers and are highly exothermic. We find that for distances (d^1) of <2.45 Å (Figure 2), the interaction between H atom and the Al₁₂XH clusters is sufficiently strong that geometry optimization leads to the formation of H₂ and Al₁₂X. To further explore this process we have investigated the angular dependence for the approach of a hydrogen atom to the Al₁₂XH clusters (Figure 2). We find that the hydrogen atom also abstracts hydrogen from Al₁₂XH for approach angles (θ) of 150, 135, and 120° ($d^1 = 2.0$ Å). However, with an approach angle of 90°, the interaction between the cluster and the "abstracting" hydrogen is greater than that between the two hydrogen atoms, and the reactions lead to the formation of Al₁₂XH₂. These results have significant implications for hydrogen storage applications. In particular, while our earlier study²² of A₁₂ and Al₁₃ revealed that these clusters can strongly bind 20 and 12 hydrogen atoms, respectively, experimental studies^{8,12} of H atom reactions with Al₁₃ have so far only revealed the formation of $Al_{13}H_n$ with n = 1-3. We can see that both the H addition and H abstraction (reverse of eq 8) are barrierless exothermic processes and, therefore, will generally be competing reactions under experimental conditions. The observation of only $Al_{13}H_n$ (*n* = 1-3) most likely represents a "steady state" for the competing reactions under the specific experimental conditions. A similar situation should occur for the Al₁₂Mg/H and Al₁₂Si/H systems. However, for the magnesium-doped system, the enthalpy for H atom addition is greater (0.45 eV) than the enthalpy for H atom abstraction, which should favor the formation of $Al_{12}MgH_n$ over H abstraction. The reverse is true for the silicon-doped system, where ΔH for abstraction is greater (0.73 eV) than H atom addition, and so abstraction should be favored. This indicates that any Al₁₂X-based hydrogen storage technology that involves predissociation of H₂ will be limited by the competing addition and abstraction reactions. However, the H abstraction reactions

Figure 3. Frontier orbitals of $Al_{12}XH$ (X = Mg, Al, and Si) clusters.

Figure 4. Electron deformation densities for the Al₁₂XH species.

may provide the basis for a thermodynamically favorable H_2 release mechanism from H-loaded $Al_{12}X$ clusters.

Figure 3 displays the frontier orbitals for the $Al_{12}XH$ monohydrides. In the case of Al₁₂Mg and Al₁₃, the HOMOs are delocalized around the cluster metal atoms and do not include the H atom. However, the LUMOs of these species are delocalized along the principal axis, which includes the H atom. The reverse is true for Al₁₂SiH, where the LUMO is delocalized around the cluster Al atoms, but the HOMO has axial symmetry. However, in all three cases the axial frontier orbitals are suitable for overlap with the singly occupied 1s orbital of H atom. Figure 4 displays the slice of the electron deformation densities for the Al₁₂XH species. Clearly shown for all three species is the high concentration of charge density around the H atoms in agreement with earlier studies. The large concentration and extent of density around the H atom, compared with that of the cluster cage atoms, also accounts for the small angular dependence for the abstraction process compared with addition of a second hydrogen atom to the cluster.

Having established that homolytic bond cleavage reactions 7–9 are highly endothermic, the next stage of the study was to investigate the axial interaction of two $Al_{12}X$ clusters with a H_2 molecule positioned between them (10–12) as shown in Figure 5a.

$$2Al_{12}Mg + H_2 \rightarrow 2Al_{12}MgH$$
 $\Delta H = -0.58 \text{ eV}$ (10)

$$2Al_{13} + H_2 \rightarrow 2Al_{13}H$$
 $\Delta H = -0.15 \text{ eV}$ (11)

$$2AI_{12}Si + H_2 \rightarrow 2AI_{12}SiH \qquad \Delta H = +0.73 \text{ eV} \quad (12)$$

For values of $d^1 \ge 3.0$ Å there is essentially no interaction between the clusters and the H₂ molecule, as demonstrated by the negligible energy difference (<0.02 eV) between the aggregate and the sum of the energies of the individual species. However, for Al₁₂Mg with $d^1 < 3.0$ Å the interaction is sufficiently strong³¹ that geometry optimization leads to each cluster being initially drawn toward the nearest respective H atom, followed by spontaneous dissociation of the H₂ and formation of two separate Al₁₂MgH species. The H¹-H² distance (d^2) of H₂ and the Al-Mg distance for each of the Al₁₂Mg clusters in the initial configuration are equal to those observed for the isolated species, and the separation between the clusters (d^3) is 5.751 Å (Figure 6). As the process continues, the distances between the cluster atoms and the hydrogen atoms (d^1) shorten, and as a consequence the distance between the clusters (d^3) also shortens and reaches a minimum value of \sim 4.583 Å before increasing again to a value of \sim 5.75 Å after the dissociation has occurred. The final values of d^1 (1.597 Å) and Al-Mg (2.573 Å) are those of isolated atop isomers of Al₁₂MgH. A similar process is observed for the interaction of H₂ with two Al₁₃ clusters; however, while the final arrangement resembles structurally that of two Al₁₃H species, this stationary point does not represent a minimum on the potential energy surface. For the Al₁₂Si system, the interaction is repulsive, and the energy minimization process leads to the isolated reactants.

As we noted earlier, dissociation of the H₂ molecule is a highly endothermic process $\Delta H = +4.27$ eV; however, the enthalpy of the spontaneous dissociation (eq 10) is $\Delta H = -0.58$ eV. The energy balance is achieved by the fact that the reaction of H atom with Al₁₂Mg (eq 1), to give an atop isomer of Al₁₂MgH, is an exothermic reaction ($\Delta H = -2.36$ eV) that also proceeds without a barrier, and we receive two molecules of Al₁₂MgH for each H₂ molecule dissociated (eq 10). In comparison, the reaction of H₂ with a single Al₁₂Mg cluster (eq 4)

Figure 5. (a,b) Initial and final structures for reaction 10 with definitions of key calculated distances and angle. (c) Transition structure for reaction 4.

Figure 6. Evolution of key distances during the course of the reaction 10.

is also an exothermic process ($\Delta H = -0.41 \text{ eV}$); however, this reaction proceeds via a barrier ($\Delta H^{\ddagger} = +0.52 \text{ eV}$). For the 2Al₁₃/H₂ system the reaction is calculated to be only slightly exothermic, while for the 2Al₁₂Si/H₂ system the reaction is strongly endothermic.

To better understand the spontaneity of the $2Al_{12}Mg/H_2$ reaction, we have analyzed reactions 4 and 10 in terms of the orbital interactions and the electron deformation densities. As shown above, the interaction of a single cluster in the axial arrangement is too weak to lead to dissociation of H₂; however, when there is a concerted interaction between the HOMO orbitals of two Al₁₂Mg clusters with the LUMO of H₂, this initiates the dissociation process. Smaller contributions to the energy lowering are also achieved by the overlap of other occupied axial orbitals of Al₁₂Mg with the unoccupied orbitals of H₂. We also note that while the symmetry of the LUMO of Al₁₂Mg is not suited to overlap with the HOMO of H₂, orbital 175, which is only slightly higher in energy, provides the necessary symmetry (Figure 1a). As noted earlier, we observe significant reorganization of cluster orbitals for H₂ dissociation on a single Al₁₂Mg, which is also evident from the significant distortion of the cluster geometry in the transition structure (Figure 5c). However, for the spontaneous dissociation between two Al₁₂Mg clusters we observe that, as the reaction proceeds, the "axial" orbitals generally lower in energy as the H-H bond is broken and the new Al-H bonds are formed. The concerted lowering in energy of these orbitals drives the reaction toward the product configuration. Additionally, orbitals not possessing axial symmetry remain relatively undisturbed throughout the course of the reaction and, therefore, do not make a "repulsive" contribution to energy change.

The spontaneous dissociation of reaction 10 involves σ -type overlap between the orbitals of the Al₁₂X clusters and H₂. In comparison, the dissociative adsorption of H₂ onto a single cluster (eq 4) necessitates a sideways approach and, therefore, a π -type interaction. The HOMO orbital of Al₁₂Mg does not possess the required symmetry to facilitate this process. Orbital 157 at -5.315 eV is the highest of the Al₁₂Mg occupied orbitals involved in this process. Clearly there is a larger energy separation between key orbitals for reaction 4 than observed for reaction 2, and this contributes to the observed reaction barrier. We also note that contributions are also observed from lower energy Al₁₂Mg occupied orbitals. However, the high degree of delocalization and larger energy separation from the unoccupied H₂ orbitals make these interactions relatively weak.

The interaction of a single H atom with an Al₁₂X cluster is characterized by a significant transfer of electron density from the cluster to the H atom, similar to Al₁₃/Al₁₂.¹⁴ Likewise, in the reaction of H₂ with two Al₁₂Mg clusters, we observe significant transfer of electron density from each cluster to the nearest respective H atom, as indicated by plots of the electron deformation density (Figure 7a). We can see for reaction 10 that initially there is strong localization of charge around the H atoms corresponding to the H-H bond and symmetrical distribution of density delocalized across the framework formed by the metal atoms of each cluster. As the reaction proceeds, there is a transfer of electron density from the H-H bonding region to the zones between the H atoms and the clusters. In the final arrangement, significant density is localized between the H atoms and the atop Al atoms of the respective clusters. As a consequence, there are further decreases in density around the axial atoms of the

Figure 7. Electron deformation density for (a) the initial and final structures of reaction 2 and (b) the transition structure of reaction 4.

clusters, indicating that these atoms make significant contributions to the Al–H bond. Our studies indicate that doping of the cluster with an electropositive atom (Mg) enables transfer of electron density to the Al cage, which enhances H_2 dissociation.

In the spontaneous process (reaction 10) each cluster donates an equivalent amount of electron density to its respective H atom. However, for reaction 4 involving a single Al₁₂Mg, all of the electron density must be contributed from just one cluster. Figure 7b displays the electron deformation density for the Al₁₂Mg/H₂ transition state. Clearly identified are both the significant electron density remaining between the hydrogen atoms and the initial stages of the transfer of density from the cluster to the H atoms, as demonstrated by the decreased electron density around the neighboring Al atoms. Particularly evident is the significant decrease in density around the Al¹ aluminum (Figure 7b). The electron deformation densities also clearly illustrate that one of the major differences between the spontaneous process (eq 10) and the barrier process (eq 4) is the different requirements for electron transfer from the clusters to the H atoms. In particular, the transfer of density in reaction 4 is less uniform with Al¹ required to transfer density to both the atop hydrogen (H^1) and the bridge hydrogen (H^2) , while Al^2 provides density solely to H^2 . The transfer of electrons to the H atoms significantly disrupts the Al cage density and contributes to the activation energy of reaction 10.

We have also investigated the angular dependence of the reaction and found that for angles of up to 150° between the clusters, along the principal axis (Figure 5), there is still spontaneous dissociation of H₂ to give two Al₁₂MgH species. This is possible because sufficient overlap of the cluster "axial" orbitals with the H₂ orbitals can still be achieved to initiate the dissociation. However, for angles of 120° and 90° between the clusters, interaction between the orbitals of the clusters, which results in merging of the clusters, with the hydrogen atoms adsorbed on the surface of the aggregate.

Clearly in the gas phase, the probability of occurrence of our trimolecular spontaneous process (eq 10) is quite low. However, the aim of this work is to demonstrate that for specific arrangements of clusters, it is possible to achieve spontaneous dissociation of H_2 . Our ongoing research will investigate the embedding/deposition of $Al_{12}X$ clusters in an "inert" material, such as a carbon framework. This will also prevent possible coalescence of the metal clusters in a condensed phase.

4. Conclusions

We have investigated axial interactions of H₂ with Al₁₂X (X = Mg, Al, and Si) clusters and found that homolytic dissociation, leading to the Al₁₂XH and H atom, proceeds without a barrier but is an extremely endothermic process. However, dissociation of a H₂ molecule between closely spaced Al₁₂Mg clusters proceeds spontaneously. The linear arrangement of Al12Mg clusters and H2 allows optimal overlap of the "axial" orbitals of the clusters and H₂, enhancing transfer of electron density to the H atoms. Doping of the cluster with an electropositive atom (Mg) enables transfer of electron density to the Al cage, which enhances H₂ dissociation. Further to this, spreading the electron density demand of the H atoms over two clusters rather than one, enables the process to proceed without an energy barrier. While the binding of hydrogen to these clusters is too strong to be of direct application in catalysis, the information gained can contribute to the design of novel solid-state materials made of Al-doped clusters, which may ultimately be suitable for catalytic processes.

Acknowledgment. We gratefully acknowledge the award of an Australian Research Council Discovery Grant to carry out this work. We also gratefully acknowledge allocation of computing time from the National Facility of the Australian Partnership for Advanced Computing (APAC). We would also like to thank Dr. Bernard Delley and Dr. Alexander Goldberg for helpful discussions.

References and Notes

- (1) Bhatia, S. K.; Myers, A. L. Langmuir 2006, 22, 1688-1700.
- (2) Pozzo, M.; Alfè, D.; Amieiro, A.; French, S.; Pratt, A. J. Chem. Phys. 2008, 128, 094703.
- (3) Bogdanovic, B.; Schwickardi, M. J. Alloys Compd. 1997, 253-4, 1-9.
- (4) Chaudhuri, S.; Muckerman, J. T. J. Phys. Chem. B 2005, 109, 6952–6957.
- (5) Chaudhuri, S.; Graetz, J.; Ignatov, A.; Reilly, J. J.; Muckerman, J. T. J. Am. Chem. Soc. **2006**, *128*, 11404–11415.
 - (6) Rao, B. K.; Jena, P. J. Chem. Phys. 1999, 111, 1890-1904.
- (7) Ahlrichs, R.; Elliott, S. D. *Phys. Chem. Chem. Phys.* **1998**, *1*, 13–21.
- (8) Cox, D. M.; Trevor, D. J.; Whetten, R. L.; Kaldor, A. J. Phys. Chem. 1988, 92, 421–429.
- (9) Taylor, K. J.; Pettiette, C. L.; Craycraft, M. J.; Chesnovsky, O.; Smalley, R. E. *Chem. Phys. Lett.* **1988**, *152*, 347–352.
- (10) Knight, W. D.; Clemenger, K.; de Heer, W. A.; Saunders, W. A.; Chou, M. Y.; Cohen, M. L. *Phys. Rev. Lett.* **1984**, *52*, 2141–2143.
- (11) Chou, M. Y.; Cohen, M. L. Phys. Lett. 1986, 113A, 420-424.
- (12) Burkart, S.; Blessing, N.; Klipp, B.; Müller, J.; Ganteför, G.; Seifert,
 G. Chem. Phys. Lett. 1999, 301, 546–550.
- (13) Kawamura, H.; Kumar, V.; Sun, Q.; Kawazoe, Y. Phys. Rev. B 2001, 65, 045406.
- (14) Mañanes, A.; Duque, F.; Méndez, F.; López, M. J.; Alonso, J. A. J. Chem. Phys. **2003**, 119, 5128–5141.
 - (15) Yarovsky, I.; Goldberg, A. Mol. Simul 2005, 31, 475-481.
- (16) Han, Y.-K.; Jung, J.; Kim, K. H. J. Chem. Phys. 2005, 122, 124319.

(17) Kumar, V.; Bhattacharjee, S.; Kawazoe, Y. Phys. Rev. B: Condens. Matter Mater. Phys. 2000, 61, 8541–8547.

- (18) Charkin, O. P.; Charkin, D. O.; Klimenko, N. M.; Mebel, A. M. Faraday Discuss. 2003, 124, 215.
- (19) Lu, Q. L.; Jalbout, A. F.; Luo, Q. Q.; Wan, J. G.; Wang, G. H. J. Chem. Phys. **2008**, *128*, 224707.
- (20) Henry, D. J.; Yarovsky, I. J. Phys. Chem. A 2009, 113, 2565-2571.
- (21) Henry, D. J.; Varano, A.; Yarovsky, I. J. Phys. Chem. A 2008, 112, 9835–9844.
- (22) Goldberg, A.; Yarovsky, I. Phys. Rev. B: Condens. Matter Mater. Phys. 2007, 75, 195403.
 - (23) Jung, J.; Han, Y.-K. J. Chem. Phys. 2006, 125, 064306.
 - (24) Delley, B. J. Chem. Phys. 1990, 92, 508-517.

(25) Delley, B. J. Chem. Phys. 2000, 113, 7756.

(26) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865-3868.

- (27) Fowler, J. E.; Ugalde, J. M. Phys. Rev. A: At., Mol., Opt. Phys. 1998, 58, 383-388.
- (28) Upton, T. H. *Phys. Rev. Lett.* **1986**, *56*, 2168–2171.
 (29) Upton, T. H.; Cox, D. M.; Kaldor, A. In *The Physics and Chemistry of Small Clusters*; Jena, P., Ed.; Plenum: New York, 1987.

(30) The singly occupied orbitals of Al₁₂Mg are marginally lower in energy (E = -4.941 eV) and more delocalized than the HOMO.

(31) At d = 2.5 Å, the total energy of the aggregate is 0.05 eV less than the sum of the energies of the individual species.

JP810688F